Categories
Product Catalog

China manufacturer Galvanized Single Sheave Trawl Block Swivel Eye Pulley pulley alternator

Product Description

Product Parameters

Hot Dig Galvanized Alloy Die Casting  Try Net Block Pulley with Rigid Eye

 

Hot Dig Galvanized Alloy Die Casting Try Net Block Pulley with Rigid Eye

SIZE CODE S.W.L DIAM OF ROPE QTY/CASE N.W/G.W WD SIZE
inch   ton mm pcs kg cm
6 HY12-10801 5 26 40 400/430 108x73x53
8 HY12-10802 10 36 20 516/541 93x79x67

Hot Dig Galvanized Alloy Die Casting Trawl Block Pulley with Rigid Eye

SIZE CODE S.W.L DIAM OF ROPE QTY/CASE N.W/G.W WD SIZE
inch   ton mm pcs kg cm
4 HY12-10803 2 16 80 412/440 80x62x72
6 HY12-10804 5 26 40 413/440 108x73x53
8 HY12-10805 10 36 20 260/293 93x79x67
12 HY12-10806 10 48 10 376/406 106x91x54
16 HY12-10807 20 50 6 346/376 113x74x63
22 HY12-10808 30 88 2 280/305 97x47x77

Certifications

Packaging & Shipping

Payment Term

Exhibition

Our Factory

Established in 1984 with a focus on rigging hardware, chain, wire rope sling and assembly fabrication, CHINAMFG MACHINERY CO.LTD.has evolved to become a full service supplier in distributing steel wire ropes, lifting slings, and rigging hardware to serve our clients needs in the Oil and Gas, Crane and Rigging,Stevedoring, Marine and General Construction industries. Besides we are also dealing with fasteners and other construction products to meet the requirements from our customers in this line.
Our brands CHINAMFG has earned highly reputation from our customers all over the world. Our clients have appreciated our time tested maxim of delivering products and services with honesty and integrity and in return it is our clients which have made possible the growth of our Company to the level it is today. In order to meet the growth of our customer needs we have recently acquired a larger more modern warehouse and production facilities, updated and expanded our range of wire rope assembly production equipment, increased and broadened our already comprehensive inventory, and expanded our sales and fabrication departments, with competent and reliable wire rope professionals.

By entering our web site you will be given an idea of our stock range of products, which we feel is a good balance of the items most frequently requested by our Clients. Kindly note that there are numerous products and services that are not shown at this time, so if you do not see the product you are looking for on the site, please contact our sales office directly.We will be adding even more products, product features, safety and technical information to the site, in the very near future.

HONYUAN people warmly welcomed your visit to our factory and discuss face to face, thank You!

Certification: CE, ISO
Manufacturing Process: Die Casting
Material: Carbon Steel
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

sheave pulley

How are sheave pulleys used in the operation of cranes and hoists?

Sheave pulleys play a vital role in the operation of cranes and hoists, enabling the lifting and movement of heavy loads. Here is a detailed explanation of how sheave pulleys are used in the operation of cranes and hoists:

In cranes and hoists, sheave pulleys are typically incorporated into the lifting mechanism, often in combination with cables or ropes. The integration of sheave pulleys involves the following steps:

1. Lifting Mechanism Design: The lifting mechanism of a crane or hoist is designed based on the specific requirements of the lifting operation. Factors such as load capacity, lifting height, and application type are taken into consideration.

2. Wire Rope Selection: The appropriate wire rope or cable is selected based on the load capacity and other relevant factors. The wire rope is chosen to have suitable properties such as strength, flexibility, and resistance to wear or corrosion.

3. Sheave Pulley Configuration: Sheave pulleys are configured and positioned within the lifting mechanism to guide and support the wire rope. The pulleys are mounted on a framework or structure that allows them to rotate freely.

4. Multiple Pulley Systems: Cranes and hoists often utilize multiple sheave pulleys arranged in various configurations to achieve mechanical advantage and increase lifting capacity. These configurations include single sheave, double sheave, and multiple sheave arrangements.

5. Wire Rope Routing: The wire rope is threaded through the grooves of the sheave pulleys, creating a continuous loop. The pulleys guide the wire rope along the intended path, ensuring proper alignment and minimizing friction.

6. Drive Mechanism: A drive mechanism, such as an electric motor or hydraulic system, provides the power necessary to rotate the sheave pulleys. The rotation of the pulleys causes the wire rope to move, lifting or lowering the load.

7. Lifting and Lowering: When the crane or hoist is operated, the sheave pulleys rotate, causing the wire rope to move. As the wire rope is wound or unwound from the pulleys, the load is lifted or lowered accordingly. The mechanical advantage provided by the multiple pulley systems allows for efficient lifting and precise control.

8. Load Control and Safety: Cranes and hoists incorporate various control mechanisms, such as brakes and limit switches, to ensure safe and controlled lifting operations. These mechanisms work in conjunction with the sheave pulleys and other components to prevent overloading, uncontrolled descent, or other hazardous situations.

Regular maintenance and inspection of the sheave pulleys, wire rope, and other lifting components are essential to ensure the continued safe and reliable operation of cranes and hoists. This includes lubrication of the pulleys, checking for signs of wear or damage, and making necessary adjustments or replacements to maintain optimal functionality.

sheave pulley

How does the size and design of a sheave pulley impact its performance?

The size and design of a sheave pulley have a significant impact on its performance in various applications. Here is a detailed explanation of how the size and design of a sheave pulley affect its performance:

1. Mechanical Advantage: The size of a sheave pulley directly affects the mechanical advantage it provides. A larger diameter sheave pulley offers a greater mechanical advantage, allowing for higher torque or force amplification. This is particularly important in applications where heavy loads need to be lifted or moved. Conversely, a smaller diameter sheave pulley provides a lower mechanical advantage but allows for higher rotational speed. The selection of the appropriate sheave pulley size is crucial to achieving the desired balance between torque and speed in the system.

2. Speed and Torque Ratio: The size ratio between the driving and driven sheave pulleys determines the speed and torque ratio in belt and chain drive systems. By varying the diameter of the sheave pulleys, the rotational speed of the driven component can be adjusted relative to the driving component. A larger driven sheave pulley compared to the driving sheave pulley results in higher torque but lower speed, while a smaller driven sheave pulley leads to higher speed but lower torque. The proper sizing and design of the sheave pulleys are critical in achieving the desired speed and torque characteristics of the system.

3. Belt or Chain Compatibility: The design of a sheave pulley should be compatible with the type and size of the belt or chain being used. The grooves and profile of the sheave pulley should match the corresponding belt or chain, ensuring proper engagement and minimizing slippage. A well-designed sheave pulley provides sufficient grip on the belt or chain, maximizing power transmission efficiency and preventing premature wear or failure of the system.

4. Material Selection: The design of a sheave pulley also includes the choice of materials. The material selection depends on factors such as the load-bearing capacity, environmental conditions, and desired friction characteristics. Common materials for sheave pulleys include steel, cast iron, aluminum, and various polymers. The material should possess the necessary strength, durability, and resistance to wear, corrosion, or temperature variations, ensuring reliable performance and longevity of the sheave pulley.

5. Groove Configuration: The design of the grooves in a sheave pulley is crucial for proper cable or belt tracking. The groove configuration should match the shape and size of the cable or belt to ensure effective engagement and prevent slipping or misalignment. Different groove profiles, such as V-shaped, U-shaped, or flat, are used depending on the application requirements. The correct groove design promotes efficient power transmission, reduces wear on the cables or belts, and minimizes noise and vibration.

6. Bearing and Lubrication: The design of a sheave pulley should consider the bearing arrangement and lubrication requirements. Proper bearing selection and lubrication ensure smooth rotation and reduce frictional losses. The design should allow for easy access to the bearing for maintenance and replacement. Additionally, provisions for lubrication, such as grease fittings or oiling points, should be incorporated to ensure optimal performance and longevity of the sheave pulley.

7. Load Capacity: The size and design of a sheave pulley determine its load-bearing capacity. A well-designed sheave pulley can handle the anticipated loads without deformation or failure. The material strength, groove profile, and overall structural integrity of the sheave pulley should be carefully considered to ensure safe and reliable operation under the expected loads.

Overall, the size and design of a sheave pulley directly impact its performance. Factors such as mechanical advantage, speed and torque ratio, belt or chain compatibility, material selection, groove configuration, bearing and lubrication requirements, and load capacity must be carefully considered in the design process to achieve optimal performance, efficiency, and reliability in various applications.

sheave pulley

What are the primary components and design features of a sheave pulley?

A sheave pulley consists of several primary components and design features that are essential to its functionality. Here is a detailed explanation of the primary components and design features of a sheave pulley:

1. Wheel or Disk: The main body of a sheave pulley is typically a wheel or disk-shaped component. It is usually circular in shape, with a central axle or hub. The wheel or disk provides the structural support and rotational motion required for the pulley to function.

2. Grooves: Sheave pulleys feature one or more grooves on their outer circumference. The grooves are specifically designed to accommodate belts, ropes, or cables. The number and configuration of the grooves depend on the intended application and the type of belt or rope that will be used with the pulley. The grooves ensure proper alignment and grip, preventing slippage and enabling efficient power transmission or lifting operations.

3. Axle or Hub: The axle or hub is the central component of the sheave pulley. It provides the rotational axis around which the wheel or disk rotates. The axle or hub is typically mounted on a shaft or bearing, allowing the pulley to rotate freely.

4. Bearings: In some sheave pulleys, bearings are incorporated into the design to reduce friction and enable smooth rotation. The bearings are usually located within the axle or hub, allowing the pulley to rotate with minimal resistance. The use of bearings enhances the efficiency and durability of the sheave pulley.

5. Material: Sheave pulleys are commonly made from various materials, depending on the specific application and operating conditions. Common materials used for sheave pulleys include metals such as steel or cast iron, as well as synthetic materials like nylon or high-density polyethylene (HDPE). The choice of material depends on factors such as load capacity, environmental conditions, and desired durability.

6. Size and Configuration: Sheave pulleys come in various sizes and configurations to accommodate different system requirements. The size of the pulley is determined by factors such as the load capacity, belt or rope thickness, and the desired speed of rotation. Additionally, the configuration of the pulley, including the number and arrangement of grooves, can vary depending on the specific application and the type of belt or rope used.

7. Mounting: Sheave pulleys are typically mounted on a shaft or bearing housing to ensure proper alignment and stability. The mounting mechanism may involve set screws, keyways, or other fastening methods to secure the pulley in place. Proper mounting is crucial to ensure smooth rotation and prevent any misalignment or wobbling that could affect the performance of the pulley.

In summary, the primary components and design features of a sheave pulley include the wheel or disk, grooves for accommodating belts, ropes, or cables, the axle or hub for rotational motion, bearings for reducing friction, the choice of material for durability, size and configuration variations, and the mounting mechanism for proper alignment. These components and design features work together to enable efficient power transmission and lifting operations in various mechanical systems.

China manufacturer Galvanized Single Sheave Trawl Block Swivel Eye Pulley   pulley alternatorChina manufacturer Galvanized Single Sheave Trawl Block Swivel Eye Pulley   pulley alternator
editor by CX

2023-11-27